Abstract
Objective: There is growing evidence that genetic data are of benefit in the rheumatology outpatient setting by aiding early diagnosis. A genetic probability tool (G-PROB) has been developed to aid diagnosis has not yet been tested in a real-world setting. Our aim was to assess whether G-PROB could aid diagnosis in the rheumatology outpatient setting using data from the Norfolk Arthritis Register (NOAR), a prospective observational cohort of patients presenting with early inflammatory arthritis.
Methods: Genotypes and clinician diagnoses were obtained from patients from NOAR. Six G-probabilities (0%–100%) were created for each patient based on known disease-associated odds ratios of published genetic risk variants, each corresponding to one disease of rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, spondyloarthropathy, gout, or “other diseases.” Performance of the G-probabilities compared with clinician diagnosis was assessed.
Results: We tested G-PROB on 1,047 patients. Calibration of G-probabilities with clinician diagnosis was high, with regression coefficients of 1.047, where 1.00 is ideal. G-probabilities discriminated clinician diagnosis with pooled areas under the curve (95% confidence interval) of 0.85 (0.84–0.86). G-probabilities <5% corresponded to a negative predictive value of 96.0%, for which it was possible to suggest >2 unlikely diseases for 94% of patients and >3 for 53.7% of patients. G-probabilities >50% corresponded to a positive predictive value of 70.4%. In 55.7% of patients, the disease with the highest G-probability corresponded to clinician diagnosis.
Conclusion: G-PROB converts complex genetic information into meaningful and interpretable conditional probabilities, which may be especially helpful at eliminating unlikely diagnoses in the rheumatology outpatient setting.
Methods: Genotypes and clinician diagnoses were obtained from patients from NOAR. Six G-probabilities (0%–100%) were created for each patient based on known disease-associated odds ratios of published genetic risk variants, each corresponding to one disease of rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, spondyloarthropathy, gout, or “other diseases.” Performance of the G-probabilities compared with clinician diagnosis was assessed.
Results: We tested G-PROB on 1,047 patients. Calibration of G-probabilities with clinician diagnosis was high, with regression coefficients of 1.047, where 1.00 is ideal. G-probabilities discriminated clinician diagnosis with pooled areas under the curve (95% confidence interval) of 0.85 (0.84–0.86). G-probabilities <5% corresponded to a negative predictive value of 96.0%, for which it was possible to suggest >2 unlikely diseases for 94% of patients and >3 for 53.7% of patients. G-probabilities >50% corresponded to a positive predictive value of 70.4%. In 55.7% of patients, the disease with the highest G-probability corresponded to clinician diagnosis.
Conclusion: G-PROB converts complex genetic information into meaningful and interpretable conditional probabilities, which may be especially helpful at eliminating unlikely diagnoses in the rheumatology outpatient setting.
Original language | English |
---|---|
Pages (from-to) | 696-703 |
Number of pages | 8 |
Journal | Arthritis & Rheumatology |
Volume | 76 |
Issue number | 5 |
Early online date | 27 Nov 2023 |
DOIs | |
Publication status | Published - May 2024 |