Abstract
MICs of piperacillin/tazobactam are conventionally determined by varying the concentration of piperacillin in the presence of a fixed 4 mg/L tazobactam. When tested in this way, the MIC distribution for Klebsiella isolates with extended-spectrum beta-lactamases (ESBLs) is strongly bimodal, such that many producers are inhibited at 16 + 4 mg/L whilst others require MICs of > or =512 + 4 mg/L. When, however, piperacillin/tazobactam was tested as a fixed 8:1 ratio, the MIC distribution became unimodal. If clavulanate 4 mg/L was combined with piperacillin, a unimodal MIC distribution was seen for ESBL-producing Klebsiella spp. but a bimodal distribution arose if the clavulanate concentration was reduced to 0.25 mg/L. These data for alternative combinations suggested that the bimodal MIC distribution seen for piperacillin + tazobactam 4 mg/L was a titration effect, not a reflection of some ESBLs being resistant to tazobactam. Even within single strains, as defined by serotype and DNA fingerprints, there was considerable variation in susceptibility to piperacillin + tazobactam 4 mg/L, with some representatives highly susceptible and others highly resistant. Some of the more resistant representatives produced more of their ESBL, or had a greater number of beta-lactamase types, but these associations were not universal. Elevated resistance to piperacillin + tazobactam was not associated with porin change in any ESBL producer examined, but has been found by others.
Original language | English |
---|---|
Pages (from-to) | 605-612 |
Number of pages | 8 |
Journal | Journal of Antimicrobial Chemotherapy |
Volume | 51 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2003 |
Keywords
- Bacterial Outer Membrane Proteins
- Drug Resistance, Multiple, Bacterial
- Humans
- Klebsiella
- Microbial Sensitivity Tests
- Penicillanic Acid
- Piperacillin
- beta-Lactamases