TY - JOUR
T1 - What’s hot and what’s not: making sense of biodiversity ‘hotspots’
AU - Thompson, Murray S. A.
AU - Couce, Elena
AU - Webb, Thomas J.
AU - Grace, Miriam
AU - Cooper, Keith M.
AU - Schratzberger, Michaela
N1 - Funding Information: M.S.A.T., E.C., M.S. and K.M.C. were funded by the Integrated Monitoring project led by Sven Kupschus (DP410) and Defra Marine Biodiversity SLA (MB0129); M.G., T.J.W. and M.S. were supported by the Natural Environment Research Council and Department for Environment, Food and Rural Affairs (grant number NE/L003279/1, Marine Ecosystems Research Programme). The authors additionally wish to thank the MMO for authorizing the use of the VMS fishing pressure data, and Lenka Fronkova and Roi Martinez for analysing it and producing the gridded product that was used in the analysis.
PY - 2021/2
Y1 - 2021/2
N2 - Conserving biogeographic regions with especially high biodiversity, known as biodiversity ‘hotspots’, is intuitive because finite resources can be focussed towards manageable units. Yet, biodiversity, environmental conditions and their relationship are more complex with multidimensional properties. Assessments which ignore this risk failing to detect change, identify its direction or gauge the scale of appropriate intervention. Conflicting concepts which assume assemblages as either sharply delineated communities or loosely collected species have also hampered progress in the way we assess and conserve biodiversity. We focus on the marine benthos where delineating manageable areas for conservation is an attractive prospect because it holds most marine species and constitutes the largest single ecosystem on earth by area. Using two large UK marine benthic faunal datasets, we present a spatially gridded data sampling design to account for survey effects which would otherwise be the principal drivers of diversity estimates. We then assess γ-diversity (regional richness) with diversity partitioned between α (local richness) and β (dissimilarity), and their change in relation to covariates to test whether defining and conserving biodiversity hotspots is an effective conservation strategy in light of the prevailing forces structuring those assemblages. α-, β- and γ-diversity hotspots were largely inconsistent with each metric relating uniquely to the covariates, and loosely collected species generally prevailed with relatively few distinct assemblages. Hotspots could therefore be an unreliable means to direct conservation efforts if based on only a component part of diversity. When assessed alongside environmental gradients, α-, β- and γ-diversity provide a multidimensional but still intuitive perspective of biodiversity change that can direct conservation towards key drivers and the appropriate scale for intervention. Our study also highlights possible temporal declines in species richness over 30 years and thus the need for future integrated monitoring to reveal the causal drivers of biodiversity change.
AB - Conserving biogeographic regions with especially high biodiversity, known as biodiversity ‘hotspots’, is intuitive because finite resources can be focussed towards manageable units. Yet, biodiversity, environmental conditions and their relationship are more complex with multidimensional properties. Assessments which ignore this risk failing to detect change, identify its direction or gauge the scale of appropriate intervention. Conflicting concepts which assume assemblages as either sharply delineated communities or loosely collected species have also hampered progress in the way we assess and conserve biodiversity. We focus on the marine benthos where delineating manageable areas for conservation is an attractive prospect because it holds most marine species and constitutes the largest single ecosystem on earth by area. Using two large UK marine benthic faunal datasets, we present a spatially gridded data sampling design to account for survey effects which would otherwise be the principal drivers of diversity estimates. We then assess γ-diversity (regional richness) with diversity partitioned between α (local richness) and β (dissimilarity), and their change in relation to covariates to test whether defining and conserving biodiversity hotspots is an effective conservation strategy in light of the prevailing forces structuring those assemblages. α-, β- and γ-diversity hotspots were largely inconsistent with each metric relating uniquely to the covariates, and loosely collected species generally prevailed with relatively few distinct assemblages. Hotspots could therefore be an unreliable means to direct conservation efforts if based on only a component part of diversity. When assessed alongside environmental gradients, α-, β- and γ-diversity provide a multidimensional but still intuitive perspective of biodiversity change that can direct conservation towards key drivers and the appropriate scale for intervention. Our study also highlights possible temporal declines in species richness over 30 years and thus the need for future integrated monitoring to reveal the causal drivers of biodiversity change.
KW - Random Forest analysis
KW - biodiversity
KW - biodiversity hotspot
KW - conservation
KW - diversity partitioning
KW - marine benthic fauna
KW - rarefaction and extrapolation
KW - species richness
UR - http://www.scopus.com/inward/record.url?scp=85096790422&partnerID=8YFLogxK
U2 - 10.1111/gcb.15443
DO - 10.1111/gcb.15443
M3 - Article
VL - 27
SP - 521
EP - 535
JO - Global Change Biology
JF - Global Change Biology
SN - 1354-1013
IS - 3
ER -