TY - JOUR
T1 - Zinc-doping strategy on P2-type Mn-based layered oxide cathode for high-performance potassium-ion batteries
AU - Zheng, Yunshan
AU - Li, Junfeng
AU - Ji, Shunping
AU - Hui, Kwan San
AU - Wang, Shuo
AU - Xu, Huifang
AU - Wang, Kaixi
AU - Dinh, Duc Anh
AU - Zha, Chenyang
AU - Shao, Zongping
AU - Hui, Kwun Nam
N1 - Funding Information: Y.Z. and J.L. contributed equally to this work. This work was funded by The Science and Technology Development Fund, Macau SAR (File no. 046/2019/AFJ, 0007/2021/AGJ, 006/2022/ALC), the Multi‐Year Research Grants (MYRG2020‐00187‐IAPME and MYRG2022‐00223‐IAPME) from the Research Services and Knowledge Transfer Office at the University of Macau, and the UEA funding, the Science and Technology Program of Guangdong Province of China (Grant No. 2022A0505030028), the Science and Technology Innovation Committee of Shenzhen Municipality (SGDX20201103093600003). The DFT calculations are performed at High Performance Computing Cluster (HPCC) of Information and Communication Technology Office (ICTO) at University of Macau.
PY - 2023/9/27
Y1 - 2023/9/27
N2 - Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn–Teller distortion caused by high-spin Mn3+(t2g3eg1) destabilizes the host structure and reduces the cycling stability. Here, K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn–Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the Mn-O bonding, thereby alleviating the anisotropic coupling between oxidized O2− and Mn4+ and improving the structural stability. K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 provided an initial discharge capacity of 57 mAh g−1 at 100 mA g−1 and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs.
AB - Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn–Teller distortion caused by high-spin Mn3+(t2g3eg1) destabilizes the host structure and reduces the cycling stability. Here, K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn–Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the Mn-O bonding, thereby alleviating the anisotropic coupling between oxidized O2− and Mn4+ and improving the structural stability. K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 provided an initial discharge capacity of 57 mAh g−1 at 100 mA g−1 and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs.
KW - Jahn–Teller distortion
KW - KNaMnNiZnO cathodes
KW - Mn-based layered oxide
KW - Zn-doping strategy
UR - http://www.scopus.com/inward/record.url?scp=85159067317&partnerID=8YFLogxK
U2 - 10.1002/smll.202302160
DO - 10.1002/smll.202302160
M3 - Article
AN - SCOPUS:85159067317
VL - 19
JO - Small
JF - Small
SN - 1613-6810
IS - 39
M1 - 2302160
ER -