Zirconocene-catalysed propene polymerisation: kinetics, mechanism, and the role of the anion

F Song, MD Hannant, RD Cannon, M Bochmann

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

The olefin polymerisation activity of metallocene catalysts strongly depends on the counteranion provided by the activator system. The relative activities of a number of new diborate anions [Z(BAr3)2]- have been quantified (Z = CN, NH2, N(CN)2; Ar = C6F5 or o-C6F4C6F5). The kinetic parameters for the initiation, propagation and termination steps of propene polymerisations catalysed by (SBI)ZrCl2 have been determined using quenched-flow kinetic and batch techniques [SBI = rac-Me2Si(1-Ind)2]. Comparison of two activator systems, (i) CPh3[B(C6F5)4] / triisobutylaluminium (TIBA) and (ii) methylaluminoxane (MAO) shows, surprisingly, that the concentration of species actively involved in chain growth at any one time is comparable for both systems, although the MAO-activated catalyst is about 20 times less active than the borate system. It is concluded that the counteranion remains sufficiently strongly bound to the metal centre throughout the chain growth sequence to modulate the energetics of monomer insertion. A model suggesting that the monomer binding follows an associative interchange (Ia) mechanism is proposed.
Original languageEnglish
Pages (from-to)173-186
Number of pages14
JournalMacromolecular Symposia
Volume213
Issue number1
DOIs
Publication statusPublished - 29 Jun 2004

Cite this